

On the conjugacy class graphs of some dicyclic groups

Zeinab Foruzanfar^{a,*}, Mehdi Rezaei^b

^a Imam Khomeini International University - Buin Zahra Higher Education Center of Engineering and Technology, Qazvin, Iran. ^b Imam Khomeini International University - Buin Zahra Higher Education Center of Engineering and Technology, Qazvin, Iran

Abstract

Let G be a dicyclic group and $\Gamma(G)$ be the attached graph related to its conjugacy classes, which is defined as: the vertices of $\Gamma(G)$ are represented by the non-central conjugacy classes of G and two distinct vertices x^G and y^G are connected with an edge if (o(x), o(y)) > 1. In this paper, we calculate the clique number and the girth of $\Gamma(G)$ for dicyclic groups of orders 4p, 8p, 4p², 4pq and 2^m.

Keywords: Dicyclic group, Conjugacy class, Clique number, Girth. **2020 MSC:** 05C25, 20D60.

©2021 All rights reserved.

1. Introduction

There are many possible ways for associating a graph with a group, for the purpose of investigating these algebraic structures using properties of the associated graph, see for example [[1], [2], [5], [7]]. Let G be a finite group and V(G) be the set of all non-central conjugacy classes of G. From orders of representatives of conjugacy classes, the following conjugacy class graph $\Gamma(G)$ was introduced in [8]: its vertex set is the set V(G) and two distinct vertices x^G and y^G are connected with an edge if (o(x), o(y)) > 1. This graph has been widely studied. See, for instance [3] and [6]. A subset X of the vertices of Γ is called a clique if the induced subgraph on X is a complete graph. The maximum size of a clique in a graph Γ is called the clique number of Γ and is denoted by $\omega(\Gamma)$. A graph Γ is connected if there is a path between each pair of the vertices of Γ . The length of the shortest cycle in a graph Γ is called the girth of Γ and is denoted by $u^2(\Gamma)$. Recall that $\text{Dic}_n = \langle a, b \mid a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle$ is a dicyclic group of order 4n ($n \ge 2$). In this paper, we calculate the clique number and the girth of conjugacy class graph of dicycle groups of orders 4p, 8p, $4p^2$, 4pq and 2^m , where p and q are two odd primes and m is a natural number.

2. Preliminary Results

In this section we give some preliminaries which will be used in the proof of our main result.

Lemma 2.1. [4] The group $G = \text{Dic}_n$ has precisely (n+3) conjugacy classes: {1}, $\{a^n\}, \{a^i, a^{-i}\}(1 \le i \le n-1), \{a^{2j}b, 0 \le j \le n-1\}, \{a^{2j+1}b, 0 \le j \le n-1\}.$

*Corresponding author

Received: November, 1, 2021 Revised: November, 15, 2021 Accepted: November, 20, 2021

Email addresses: zforouzanfar@gmail.com, z.forozanfar@bzeng.ikiu.ac.ir (Zeinab Foruzanfar), mehdrezaei@gmail.com, m.rezaei@bzeng.ikiu.ac.ir (Mehdi Rezaei)

Lemma 2.2. [4] Let $G = Dic_n$ be a dicyclic group of order 4n ($n \ge 2$). If g_i for $1 \le i \le n+3$ are the representatives of the conjugacy classes of G, then we have table 1:

able 1: Rep	resentativ	ves c	of the c	onjugacy classes of a dic	yclic	group	of order 4n
	gi	1	an	$\mathfrak{a}^{r} (1 \leq r \leq n-1)$	b	ab	
	$o(g_i)$	1	2	$\frac{2n}{(2n,r)}$	4	4	

Lemma 2.3. Let $G = Dic_n$ be a dicyclic group of order 4n ($n \ge 2$). If n = p, where p is an odd prime, then the number of conjugacy classes of G with representatives of type a^r ($1 \le r \le n-1$) is given in Table 2.

Table 2. Representatives of type d' in dicyclic gloups of order 4p				
$o(a^r) \ (1 \leq r \leq n-1)$	The number of conjugacy classes of G with representatives of type a ^r			
р	$\frac{\varphi(p)}{2} = \frac{p-1}{2}$			
2p	$\frac{\varphi(2p)}{2} = \frac{p-1}{2}$			

Table 2: Representatives of type a^r in dicyclic groups of order 4p

Proof. Suppose that G is a dicyclic group of order 4p. By Lemma 2.1 and Lemma 2.2, G has p - 1 non-central conjugacy classes of size 2, $(\frac{p-1}{2}$ of these classes have representatives of orders p and the remaining $\frac{p-1}{2}$ classes have representatives of orders 2p) and 2 non-central conjugacy classes of size p (with representatives of orders 4). So, the result follows.

Lemma 2.4. Let $G = Dic_n$ be a dicyclic group of order 4n ($n \ge 2$). If $n = p^2$, where p is an odd prime, then the number of conjugacy classes of G with representative of type a^r ($1 \le r \le n-1$) is listed in Table 3.

$o(a^r) (1 \leq r \leq n-1)$	The number of conjugacy classes of G with representatives of type a ^r
2p ²	$\frac{\varphi(2p^2)}{2} = \frac{p(p-1)}{2}$
p ²	$\frac{\varphi(p^2)}{2} = \frac{p(p-1)}{2}$
p	$\frac{\varphi(p)}{2} = \frac{p-1}{2}$
2p	$\frac{\varphi(2p)}{2} = \frac{p-1}{2}$

Table 3: Representatives of type a^{r} in dicyclic groups of order $4p^{2}$

Proof. Suppose that G is a dicyclic group of order $4p^2$. By Lemma 2.1 and Lemma 2.2, G has $p^2 - 1$ non-central conjugacy classes of size 2, $(\frac{p(p-1)}{2})$ of these classes have representatives of orders p^2 , $\frac{p(p-1)}{2}$ of these classes have representatives of orders p and the remaining $\frac{p-1}{2}$ classes have representatives of orders 2p) and 2 non-central conjugacy classes of size p^2 (with representatives of orders 4). The result is deduced by these facts.

Lemma 2.5. Let $G = Dic_n$ be a dicyclic group of order $4n (n \ge 2)$. If n = pq, where p and q are distinct odd primes, then the number of conjugacy classes of G with representatives of type $a^r (1 \le r \le n-1)$ is listed in Table 4.

note il representatives of type a lift aleyene groups of order ipq				
$o(a^{r}) (1 \leq r \leq n-1)$	The number of conjugacy classes of G with representatives of type a ^r			
2pq	$\frac{\varphi(2pq)}{2} = \frac{(p-1)(q-1)}{2}$			
pq	$\frac{\varphi(pq)}{2} = \frac{(p-1)(q-1)}{2}$			
р	$\frac{\varphi(p)}{2} = \frac{p-1}{2}$			
2p	$\frac{\varphi(2p)}{2} = \frac{p-1}{2}$			
q	$\frac{\varphi(q)}{2} = \frac{q-1}{2}$			
2q	$\frac{\varphi(2q)}{2} = \frac{q-1}{2}$			

Table 4: Representatives of type a^r in dicyclic groups of order 4pq

Proof. Suppose that G is a dicyclic group of order 4pq. By Lemma 2.1 and Lemma 2.2, G has pq - 1 non-central conjugacy classes of size 2, $(\frac{(p-1)(q-1)}{2})$ of these classes have representatives of orders 2pq, $\frac{(p-1)(q-1)}{2}$ classes have representatives of orders pq, $\frac{p-1}{2}$ classes have representatives of orders p, $\frac{p-1}{2}$ classes have representatives of orders 2p, $\frac{q-1}{2}$ classes have representatives of orders 2p, $\frac{q-1}{2}$ classes have representatives of orders q and $\frac{q-1}{2}$ classes have representatives of orders 2q) and 2 non-central conjugacy classes of size pq (with representatives of orders 4). This implies the result.

Lemma 2.6. Let $G = Dic_n$ be a dicyclic group of order 4n ($n \ge 2$). If n = 2p, where p is an odd prime, then the number of conjugacy classes of G with representatives of type a^r ($1 \le r \le n-1$) is given in Table 5.

Table 5. Representatives of type d in dreyche groups of order op				
$o(a^{r}) (1 \leq r \leq n-1)$	The number of conjugacy classes of G with representatives of type a ^r			
2p	$\frac{\varphi(2p)}{2} = \frac{p-1}{2}$			
4p	$\frac{\varphi(4p)}{2} = p - 1$			
р	$\frac{\varphi(p)}{2} = \frac{p-1}{2}$			
4	$\frac{\varphi(4)}{2} = 1$			

Table 5: Representatives of type a^r in dicyclic groups of order 8p

Proof. Suppose that G is a dicyclic group of order 4p. By Lemma 2.1 and Lemma 2.2, G has 2p - 1 non-central conjugacy classes of size 2, $(\frac{p-1}{2}$ of these classes have representatives of orders 2p, p - 1 classes have representatives of orders 4p, $\frac{p-1}{2}$ classes have representatives of orders p and 1 class has representative of order 4) and 2 non-central conjugacy classes of size 2p (with representatives of orders 4). This completes the proof.

We draw the conjugacy class graphs of some dicyclic groups in the following example.

Example 2.7. By Table 2 and Table 5, the conjugacy class graphs of dicyclc groups of orders 24 and 28 are given in Figure 1 and Figure 2, respectively.

Figure 1: Conjugacy class graph of Dic₆

Figure 2: Conjugacy class graph of Dic7

3. Main results

In this section, we give our main result as follows.

Theorem 3.1. Let $G = Dic_n$ be a dicyclic group of order 4n.

- i) If n = p, where p is an odd prime, then $\omega(\Gamma(\text{Dic}_p)) = p 1$ for $p \ge 5$ and $\omega(\Gamma(\text{Dic}_3)) = 3$. Also, girth $(\Gamma(\text{Dic}_p)) = 3$ for $p \ge 3$.
- *ii)* If $n = p^2$, where p is an odd prime, then $\omega(\Gamma(\text{Dic}_{p^2})) = p^2 1$ and $\text{girth}(\Gamma(\text{Dic}_{p^2})) = 3$.
- *iii)* If n = pq, where p and q are distinct odd primes, such that p > q, then $\omega(\Gamma(\text{Dic}_{pq})) = q(p-1)$ and girth $(\Gamma(\text{Dic}_{pq})) = 3$.
- *iv)* If n = 2p, where p is an odd prime, then $\omega(\Gamma(\text{Dic}_{2p})) = 2(p-1)$ for $p \ge 7$ and $\omega(\Gamma(\text{Dic}_{2p})) = \frac{3p+3}{2}$ for p = 3, 5. Also girth $(\Gamma(\text{Dic}_{2p})) = 3$ for $p \ge 3$.
- v) If $n = 2^m$, where m is a positive integer, then $\omega(\Gamma(\text{Dic}_{2^m})) = 2^m + 1$ and $\operatorname{girth}(\Gamma(\text{Dic}_{2^m})) = 3$.

Proof. The result follows by Lemmas 2.3-2.6 and the definition of the conjugacy class graph $\Gamma(G)$. Note that if $n = 2^m$, then $\Gamma(G)$ is the complete graph K_{2^m+1} .

References

- [1] A. Abdollahi, S. Akbari, H. R. Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006), 468–492. 1
- [2] E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math., 44 (1983), 31-43. 1
- [3] Z. Foruzanfar, Z. Mostaghim, Classification of non-solvable groups with a given property, Proc. Math. Sci., 125(1) (2015), 29–36. 1
- [4] G. James, M. Liebeck, Representations and Characters of Groups, Cambridge University Press, 1993. 2.1, 2.2
- [5] A. R. Moghaddamfar, W. J. Shi, W. Zhou, A. R. Zokayi, On non-commuting graph associated with a finite group, Siberian Math. J., 46 (2005), 325–332. 1
- [6] M. Rezaei, Z. Foruzanfar, *Classification of solvable groups with a given property*, Bull. Iranian Math. Soc., **43(6)** (2017), 1791–1800. 1
- [7] Y. Segev, The commuting graph of minimal nonsolvable groups, Geom. Dedicata., 88(13) (2001), 55–66. 1
- [8] X. You, G. Qian, A new graph related to conjugacy classes of finite groups, Chinese Ann. Math. Ser. A, 28(5) (2007), 631–636. 1